3.19 \(\int \frac{1}{x^3 (a x+b x^3)} \, dx\)

Optimal. Leaf size=43 \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{a^{5/2}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (b^(3/2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/a^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0259111, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1584, 325, 205} \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{a^{5/2}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a*x + b*x^3)),x]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (b^(3/2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/a^(5/2)

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (a x+b x^3\right )} \, dx &=\int \frac{1}{x^4 \left (a+b x^2\right )} \, dx\\ &=-\frac{1}{3 a x^3}-\frac{b \int \frac{1}{x^2 \left (a+b x^2\right )} \, dx}{a}\\ &=-\frac{1}{3 a x^3}+\frac{b}{a^2 x}+\frac{b^2 \int \frac{1}{a+b x^2} \, dx}{a^2}\\ &=-\frac{1}{3 a x^3}+\frac{b}{a^2 x}+\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{a^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.019149, size = 43, normalized size = 1. \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{a^{5/2}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a*x + b*x^3)),x]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (b^(3/2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/a^(5/2)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 39, normalized size = 0.9 \begin{align*} -{\frac{1}{3\,a{x}^{3}}}+{\frac{b}{{a}^{2}x}}+{\frac{{b}^{2}}{{a}^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(b*x^3+a*x),x)

[Out]

-1/3/a/x^3+b/a^2/x+1/a^2*b^2/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a*x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.39757, size = 234, normalized size = 5.44 \begin{align*} \left [\frac{3 \, b x^{3} \sqrt{-\frac{b}{a}} \log \left (\frac{b x^{2} + 2 \, a x \sqrt{-\frac{b}{a}} - a}{b x^{2} + a}\right ) + 6 \, b x^{2} - 2 \, a}{6 \, a^{2} x^{3}}, \frac{3 \, b x^{3} \sqrt{\frac{b}{a}} \arctan \left (x \sqrt{\frac{b}{a}}\right ) + 3 \, b x^{2} - a}{3 \, a^{2} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a*x),x, algorithm="fricas")

[Out]

[1/6*(3*b*x^3*sqrt(-b/a)*log((b*x^2 + 2*a*x*sqrt(-b/a) - a)/(b*x^2 + a)) + 6*b*x^2 - 2*a)/(a^2*x^3), 1/3*(3*b*
x^3*sqrt(b/a)*arctan(x*sqrt(b/a)) + 3*b*x^2 - a)/(a^2*x^3)]

________________________________________________________________________________________

Sympy [B]  time = 0.369346, size = 87, normalized size = 2.02 \begin{align*} - \frac{\sqrt{- \frac{b^{3}}{a^{5}}} \log{\left (- \frac{a^{3} \sqrt{- \frac{b^{3}}{a^{5}}}}{b^{2}} + x \right )}}{2} + \frac{\sqrt{- \frac{b^{3}}{a^{5}}} \log{\left (\frac{a^{3} \sqrt{- \frac{b^{3}}{a^{5}}}}{b^{2}} + x \right )}}{2} + \frac{- a + 3 b x^{2}}{3 a^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(b*x**3+a*x),x)

[Out]

-sqrt(-b**3/a**5)*log(-a**3*sqrt(-b**3/a**5)/b**2 + x)/2 + sqrt(-b**3/a**5)*log(a**3*sqrt(-b**3/a**5)/b**2 + x
)/2 + (-a + 3*b*x**2)/(3*a**2*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.25553, size = 54, normalized size = 1.26 \begin{align*} \frac{b^{2} \arctan \left (\frac{b x}{\sqrt{a b}}\right )}{\sqrt{a b} a^{2}} + \frac{3 \, b x^{2} - a}{3 \, a^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a*x),x, algorithm="giac")

[Out]

b^2*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*a^2) + 1/3*(3*b*x^2 - a)/(a^2*x^3)